Energy Curable Coatings for Automotive Interior

Marcus Hutchins and Jennifer McClung

www.allnex.com

Content

- Technology/Process Comparison
- Challenges of UV Cure
- Products 100% Solids and Waterborne UV
- Experimentation
- Results
- Conclusion 100% Solids UV and Waterborne UV
- Next Generation
- Technology Comparison
- Experimentation
- Results
- Conclusion

Automotive Interior Technology Comparison

1K or 2K Conventional (NCO- OH)

- + Full cure for difficult shape of part
- + Lower shrinkage
- + Outstanding weatherability
- Space and time
- Slow cure
- High energy consumption for drying

UV Curing

- + Fast cure (high productivity)
 + High scratch & chemical resistance
 + Small footprint & easy line retrofits
- 3D shape => NO UV = NO Cure
- Volumetric shrinkage
- Adhesion is not robust

Technology Comparison

Technolgoy Comparison

Challenges of UV Cure

- Different parts of the UV spectrum can penetrate to different depths of the coating.
- The right photoinitiator choice will initiate the reaction in the entire coating.
- UV LED is typically 385 nm, 395 nm, 405 nm. (365 nm is available at low energy output)

	Functionality, Acrylate	Hydroxyl Value (NCO, %)	Viscosity, cP at 25°C	Non-volatile, %
Bio-base Polyester	2	-	450	100
Urethane Hexa-acrylate	6	-	85000	100
RX 81100	4	-	1500	100
UV Curable PUD	6	-	50	40
Hexa-acrylate Emulsion	6	-	500	65
1K Polycarbonate PUD	-	170	200	40
1K Thermal Silicone	-		10	20

- Abrasion: Taber Haze

- 100 cycles on PC sheet with 500g load, CS10F wheels

- Scratch: Steel Wool

- 0000 and 1kg weight

- Automotive Chemical Testing

- Sun lotion and hand cream are applied on a bandage
 - The sample is put in a ventilated oven for 24 hours at 80°C
 - Lotion and cream removed and sample are left for 4 hours at room temperature before making an assessment
 - Visual assessment and rating
 - 0 no attack
 - 1 visual gloss change
 - 2 change in surface appearance
 - 3 delamination, blistering, loss of adhesion

Formulations for Testing

- 100% resin
- UV cured systems initiated
 - 100% solids: 4% based on total weight of solids,1-hydroxy-cyclohexylphenyl-ketone
 - Waterborne UV: 4% based on total weight of solids of a blend of 1-hydroxy-cyclohexylphenylketone and benzophenone (1:1)
 - Dry film target 12-14 g/m²
- Water and Solvent removal
 - 80°C for 10 minutes for water removal
 - 80°C for 10 minutes for solvent removal
- 1K/2K and Thermal Silicone: Thermal Curing
 - 80°C for 30 minutes
 - Samples keep at room temperature for 72 hours before testing

Results: UV Curable Resins – 100% Solids

	% Haze After Abrasion (CS10F,500g, 100 cycles)	Sun Lotion and Hand Cream (80°C, 24hr)	Steel Wool Scratch (0000, 1kg)
Bio-base Polyester	10	1	100 double rubs
Urethane Hexa-acrylate	7	0	100 double rubs
RX 81100	15	0	3 double rubs
Thermal Silicon	6	0	100 double rubs
1K: PC PUD	25	3	0
2K: PC PUD + HDI Trimer	15	0	3

Results: UV Curable Resins – Waterborne

	Percent Haze After Abrasion (CS10F,500g, 100 cycles)	Sun Lotion and Hand Cream (80°C, 24hr)	Steel Wool Scratch (0000, 1kg)
UV Curable PUD	12	1	5 double rubs
Hexa-functional Urethane Acrylate Emulsion	6.5	0	100 double rubs
1K Water-based Polycarbonate PUD	25	3	0 rubs
1K PC PUD + HDI Trimer	15	0	5 double rubs
1K PC PUD + UV PUD (Dual Cure)	18	1	0 rubs

Conclusion: 100% Solids and Waterborne UV

- UV/EB system can meet more stringent automotive chemical test
- Waterborne UV can be designed to have equivalent performance to higher functional acrylate system
- Bio-based resin can be designed to delivery not on improve sustainability without sacrificing performance
- Idea for flat substrates
 - ⁻ Glass transition and cross-linking (higher) important for sun lotion and hand cream resistance
- Adhesion varied based on supplier and type
- ⁻ 100% solids is not ideal for current coating processing conditions
- Dual Cure technology could possible bridge the between conventional and energy curable chemistries

Next Generation: Dual Cure

Conventional 1K or 2K SB (NCO- OH)

- + Full cure for difficult shape of part
- + Lower shrinkage
- + Outstanding weatherability
- Space and time
- Slow cure
- High energy consumption for drying

UV Curing

- + Fast cure (high productivity)
- + High scratch & chemical resistance
- + Limited space needed
- 3D shape => NO UV = NO Cure
- More shrinkage (adhesion sometimes challenging)

+ Fast cure (high productivity)
+ Low shrinkage – good adhesion
+ Good scratch & chemical resistance
+ 3D shape: NO UV = Cure (NCO-OH)
+ Less space occupation

Next Generation: Dual Cure

Processing Comparison

Products

	Functionality, Acrylate (NCO)	Hydroxyl Value (NCO, %)	Viscosity, cP at 23°C	Non-volatile, %
OH Functional Acrylic	-	100	3000	55
NCO Acrylate	1.5 (1.5)	-	20000	90
Urethane acrylate	6	-	8500 (25°C)	100

- Abrasion: Taber Haze
 - 100-300-500 cycles on PC sheet with 500g load, CS10F wheels

- Curl upon cure

- Coating was applied to PET film (12.5 microns) at 12 microns
- 4"x4" sample was taken and the height of curl was measured at each corner and four corners were averaged
- Adhesion: cross hatch
 - 0= no adhesion, 5= full adhesion
- Erichsen (pen 318 with tip of 0.75 mm) pass/fail

- Double bond and NCO conversion

- Measured using FTIR spectrophotometer
 - ~810 cm⁻¹ absorbance for double bond conversion
 - ~ ~2270 cm⁻¹ absorbance for isocyanate conversion

- Accelerated Outdoor durability (ASTM G154-UVA)

- 8 hours at 60°C at an irradiance of 0.89 W/cm²
- 4 hours dark at 50°C

- Humidity resistance: VW TL 226 Aging stability

- hydrolysis (72 h, 90 °C, 95 % humidity)
- Cross hatch adhesion after humidity test

- Automotive Chemical Testing

- Sun lotion and hand cream are applied on a bandage
 - The sample is put in a ventilated oven for 24 hours at 80°C
 - Lotion and cream removed and sample are left for 4 hours at room temperature and retested
 - Cross cut adhesion
 - Gloss measured
 - Erichsen pen hardness

Starting Point Formulation

	wt %	wt %	
Component I	IV.1	IV.2	
OH Functional Acrylic	38.9	31.9	
Alphatic urethane acrylate		7.8	
Butyl acetate	15.0	15.0	
Flow and Leveling additive	0.5	0.5	
Photoinitiator *	4.2	4.2	
Catalyst**	0.02	0.02	
Component II	wt %		
NCO Functional Acrylate	56.2		

*1-hydroxy-cyclohexylphenyl-ketone **Dibutyltindilaurate (DBTL)

- Components I and II are mixed just before application
- Viscosity @ 25°C ~200 mPa.s
- Solid content ~58 %
- Substrate: plastic panel
- Target dry film thickness (DFT): 20 g/m²
- 30' @ 80°C: flash off and thermal step***
- UV curing: 2 x 10 m/min. with 120 W/cm Hg lamp (~2000 mJ/cm²)

Testing after 1 week storage at room temperature

***to be adjusted by the amount of catalyst to the requirements of the line/machine

Results – Low Curl Upon Cure

Results: Haze after Abrasion

Results: Haze after Abrasion – Additional Processing Time

		IV.1					IV.	2	
		2x 5	m/m	2x 10 m/m		2x 5m/m		2x 10 m/m	
		after 1 week	+ 48hrs 60°C						
	Uncoated								
% start	0	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2
% after 100 cycles	24.5	6.4	6.1	6.2	6.2	6	5.9	6.5	5
% after 200 cycles	25.8	9.1	8.8	9	9	8.7	8	8.8	7.4
% after 300 cycles	28	11.8	11.5	12.5	11.5	11.3	11	12.4	10.6
% after 500 cycles	30	15.6	15.4	16	14.9	14.5	15.1	15.6	13.9

Results: NCO and Double (=) Conversion

Results: Dual Cure – Stain Resistance

	IV.1		IV.	Urethane Acrylate	
	2x 5 m/m	2x 10 m/m	2x 5 m/m	2x 10 m/m	2x 10 m/m
mustard	4	3	5	3	5
eosine	5	4	5	4	5
coffee	5	5	5	5	5
isobetadine	4.5	3.5	4.5	4	5
NH10%	5	5	5	5	5
ethanol 50%	5	5	5	5	5
N70 black marker	5	5	5	5	5
Average	4.8	4.4	4.9	4.4	5
NCO conv (1 week)	86	90	81	82	Not applicable
= conv (1 week)	86	79	81	76	79 (no change)

Results: Chemical Resistance

		IV	.1	IV	.2	Urethane Acrylate	
		2x 5 m/m	2x 10 m/m	2x 5 m/m	2x 10 m/m	2x 10 m/m	
SUN cream Gloss Initial gloss Gloss Initial Adhesion Adhesion Erichser Gloss	Initial glass	20°	85.6	87.8	88.9	88.5	100
	initial gloss	60°	93.2	93	93.1	92.6	100
	Gloss (after test)	20°	87.2	86.6	87.7	87.2	99.32
		60°	92.1	92.8	92.8	92.5	98.83
	Initial Adhesion (crosshatch)		5	5	5	5	5
	Adhesion (crosshatch)		5	5	5	5	5
	Erichsen pen 10 N		pass	pass	pass	pass	pass

Results: Dual Cure – Chemical Resistance

		IV	.1	IV.2		Urethane Acrylate	
			2x 5 m/m	2x 10 m/m	2x 5 m/m	2x 10 m/m	2x 10 m/m
Hand cream lotion Initial g (after to Adhe Eri	Initial gloss	20°	85.6	87.8	88.9	88.5	100
	initial gloss	60°	93.2	93	93.1	92.6	100
	Gloss (after test)	20°	84.1	83.9	83.8	82.9	97.62
		60°	91.8	91.5	91.3	91.6	94.74
	Initial Adhesion (crosshatch)		5	5	5	5	5
	Adhesion (crosshatch)		5	5	5	5	5
	Erichsen pen 10 N		pass	pass	pass	pass	pass

Results: Dual Cure – Weathering

Conclusions

- Different combinations of UV curable products enable formulators to creating ideal coating solutions for automotive interior benefiting from intrinsic nature of the UV chemistry
- Dual Cure expands the toolbox; benefiting from the best of both worlds
 - Ductile behavior for high scratch resistance coatings
 - Excellent adhesion to ABS, PC, ABS/PC blends
 - Shorter processing time including faster final property development
 - Outstanding scratch, abrasion and chemical (sun lotion and hand cream)
 - Excellent Weatherability
 - Drying conditions (e.g. catalyst amount, thermal temperature) can influence performance !
 - NCO functional acrylates NOT impacted by NCO restrictions!

Marcus Hutchins (marcus.hutchins@allnex.com, 770-280-8391)

Join us at Booth 301

Thank you

Special Thanks Jennifer McClung Steven Cappelle Paul Gevaert

www.allnex.com